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5. A Describing Function of the CMG Nbnlinearity

Using the Analytical Torque Equation

A describing function of the CMG frictional nonlinearity was
derived earlier using the straight-line approximated input-output
relation between the frictional torque TGF and the CMG angular dis-
placement BG.

However, it is possible to derive a describing function for the
CMG frictional torque using the analytical relation between TGF and By -

It has been established that the frictional nonlinearity of the CMG

can be described by the square-Taw relation.

dT

GF _ 2
@, " Y(Terr = Taro! (5-1)
wWnere
TGFI = TGF SGN(BG) {(5-2}
TGFO = saturation Tevel of TGF
Yy = positive constant
Carrying out the integration on both sides of Eq. (5-1) yields
8, + Cy = - 8.> 0 (5-3)
6 M ¥ G = >
v {Tee = Tero?
6+ Cp = 8 <0 (5-4)
v(Tgr * Terg)

where C] and CZ are constants of integration, and



+
Tor = Ter
- _ . r—
Tar = Tor O =0 (5-6)
Then, C1 and 62 are given by
C, = 6., - ] B, > 0 (5-7)
1 Gi T o1 G :
GFi GFO)

) ] 6, <0 (5-8)

CE = '-GG_l- = G

Y(Teps * Tgro)

where eGi and TGF'

; denote the initial values of 0 and TGF’ respectively.

For a sinusoidal input, GG is represented by

0g = A cos wt ' (5-9)

It is jmportant to note that for the input of Eq. (5-9) eGi -A when

eGa_O,andeG1= A when eGg_&

Solving for TEF and T from Eqs. (5-3) and (5-4}, respectively, we

have
- -l e+ T 8.5 0 (5-10)
GF v (A cos wt + C]} GFQ G —
T- - =1 - T é < {) (5—'1])
GF ~ y{Acos wt + sz GFO G —

with
Co = A b ‘ (5-12)

1 ¥ i

C, = -A - - (5-13)

where



ﬁTmH\
L 1, ja+] )
TGFi h TGFO‘(—a +/ 2 ) (5-14)

\ a
2_*"\
- = - J— a +.I} IR
Tori = TGFO( a V2 (5-15).
a” |
a = 2y o (5-16)

With the describing function method, the frictional torque TGF may be
approximated by the fundamental component of the Fourier series. The dc
component is zero, since the input-output relation is symmetrical

about the zero-torque axis.

Thus,
TGF = A] sin wt + B] cos wt
i
[
=\/h] + By cos (wt - ¢) (5-17)
M
¢ = tan B (5-]8)

1
1 2m 1 T
A]= ¥-j 51n wt dwt = }-f TGF sinwt dwt

;
o ©F 0

+
Top Sinuwt dut (5-19)

=

2TI' 1 T _
J TGF coswt dwt = m-f TGF coswt dut

1 (274
+ %-Jﬂ Tee coswt dut (5-20)

Substitution of Egs. (5-10) and (5-11) into Eq. (5-19) gives



1/ -1 : 1" .
. A1 = E-fo TTAcosut ¥ C2)51nu¢ dut - - JO TGFO sinwt dwt
1 2 -1 _ 1 2 _
+ E—Jﬁ T Gosat = C])s1nwt dut + E—fﬂ TGFO sinut dwt (5-21)
2T
1 i GFO
A] ® Ay £n (A coswt + C2) . -
2 2T
1 GFO
+ Wﬂn (A coswt + C]) . T (5—22)
Thus
C,-A C,+M aT
] 2 l»_ﬂ GFO )
Ay = NAY[&] (——-—C2+A) + Ln (Cr’*,u ~— (5-23)

In arriving at the last expression it is noted that

and C] = ~C2 over their respective ranges of éG' Equation (5-23) is

simplified further to

4TGFO L [(C A)(C +A)}
] T Ay {C +A)(C*——7_

H

4 2 Cf’ﬂ
- % Tero * A tfﬁ =y (5-24)

Now substitution of Eqs. (5-10) and (5-11) into Eq. (5-20) yields

T T

1 j I 1
B] = YTA cosmt ¥ C~]c05mt dwt - - JO TGFO cosut dwt

1 AT 1 2"
+ %-f Y[ACDSmt Ca ] coswt duwt + E-fﬂ Tepg cosut dut (5-25)



Evaluating each of the integrals in the last equation, we have

T 21
T coswt dwt = f T cosuwt dwt = 0 (5-26)
fo GFO 5 GFO
Since C2 < -A, C2 is always negative, and C% > AZ, the first integral of
B] becomes
m
_1 -1 _ 1 f-at
I-I = Ef Y(ACDSUJt“‘C ) coswt duwt = Ty iy
0 2 0
C,
2 dwt
T A f Acoswt+C (5-27)
0 2
o oo _y(Co-A)tan{ut/2) |
- _ £ . tan
L YA T TR V2 2 Y Cé-Az 0
C
-t (5-28)
¥ yAVCZ—A

where the fact that C2 is negative has been used. Also, tan 7/2 is

taken to be += since wt/2 expands from 0 to w/2.

Similarly, the third integral of By in Eq. (5-25) is written

I, =+ IZ“;_ iJ*-*-ﬂy cosut dut
2 T T met'l'CI W
B _El 2 yan] (C{-A)tan(ut/2) Y2m
YA myA| A S —
YCy-A V C%—Az
m
C
_ - i
G V2T (5-29)
YAVC]—A

In arriving at the Tast equation, we have recognized that C] > A and
have used that tan ©/2 = -«, since in this case wt/2 expands from n/2 to 7.

Thus,



C
By= Iy *tIl=- %K el =
MR
c
. ;% I (5-30)
Vcf-a°
The describing function in complex form is written as
B34

1) = =5 (5-31)

where A, and B.I are given by Egs. (5-24) and (5-30), respectively. A
digital computer program for the computation of N{A) and -1/N(A) is listed
in Table 5-1. The constant A is represented by £ in this program. The
parameters of the nonlinearity are:

= 0.1 ft-1b
5

Taro

Y= 1.38 % 10

Figure 5-1 shows the magnitude {db) versus phase {degrees) plots of

4 0.69 x 10°, 1.38 x 10°

S1/N(R) for v = 1.38 x 10 , 0.69 x 10°, and

1.38 x 106, as the magnitude of A varies. Note that as A becomes

large, the magnitude of -1/N(A) approaches infinity and the phase

approaches -270 degrees. As A decreases, the magnitude of -1/N(A) decreases
and the phase approaches -180 degrees. In the Timit as A0, -1/N{A)

gy e _ T

goes to -]/YTGFO

Asymptotic Behavior of -1/N(A) for Very Small Values of A

Figure 5-1 shows that as A approaches zero, the magnitude of
-1/N(A) in db approaches 20 ]og]o[llyTGFGZJ and the phase is -180
degrees. The asymptotic behavior of -1/N(A} for very small values

of A is derived here analytically.
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Table 5-1

LET COMTIMOUE LESCRIEIMG FUMCTIOM — EXACT COMG HOML IMERRITY
COMFLER BV anMels :
FEALeX F(ED):PIsERDsTD;GHNMHsEETHETsE:HHsEsTGFIsTEFHpTGFPsClsEE

FEFL®S AT
Fl=2.1415%

FRO=t=20.-F]

TO=.1

Z=14,

LHMMA=Z+]1 . 32ES

EXTART=1 .E~-13

HF=Z

MO=195

Fola=1,

Fiza=3.

hprTEan 100

WREITECE I DL

D8 1 =100

DO 1 I=1.HF

E=EETART#PCI o010 oo |1 00

HE=Z . ¢5AMMA*ES T

F={=-1 . ~AAI+DEZGRT ¢ CRAsAA+T . CHHE®HA D »
TEFI=reTO

TEFM=TRFI

TEFP=-~TiRFI

Cl=E-1 . COAMMASCTEFP~TO D

CE=—E~1. {GAMMAeC TEFHN+TOD 3 :
Hi=(-4, fTGfFIb+c1 SCRTOAMPASEY 3o DLOGL C(C1+E IS CA—Ed 1~ C1~Ee%
CID2HE

HE=DLOGC D4R 2 —Er 300 ~E o EE+E D 3 0
Al=C—3 +TO-FI2+CAZ-CFIeGRMMASES 3

El=0-1. (GRAMMASE b e (2 .+ 00 DIORTCCESCE~E4E 01 - DERRT (O $5 L — E«E-;
Hi=R1-E .
El1=R1~E

GH=DCMFL*CEL s=H1 >

Liv=-1.-5HM

L1=KERLCGY

BE=AIMAGEY

GHMAG=CRES (EY

GUE=20.+ALOG10CEMAGD
BFHASE=RRDSATAMS (52 +51 2
IFCBPHAZE JGE .0, MEPHASE=GRHATE -8
WRITECASLUZIEsTHFI sGFHASE s 30E s SMAG

1 COMTIMNUE

100 FORMATC COMTIMOUE DEZCRIBIMG FUNCTIOM FOR CMG MOMLINERRT

101 FDRHHT(X:SKp”E’sile’TEFIIslﬂKn’PHHSE’sIst”DB’39X53MHGHITU
102 FORMATCIPSELS .S

ZTOF
END



DECIBELS

-80

~90

y '
i * ]
T ;
Py .
: :
AT o
oy :
. BUSSA
Corh L
;
FEEEE =
! M
i i
I
[

Lo+ 0

. bt
~
L 1oy=1.38x10%

EECE S

i

e e - T e

-270° -260

. .
3
B 1 i i
{
: . ]
L b
e o
. : i
]

Q

5 x 10785 ]

' 1.

T y=1.38%10°

=

- 5x1076

jﬁf !355:
|

PRV ey e P
i N Do ‘“' e
! .

107 0 L
;f(‘flf”i )

Cr | y=0.69%10°

+ 0

“y=1.38x10°
. T
|
i

PHEASE

Figure 5-]

-180°

~160°



Dividing both sides of £q. (5-24) by A and expanding the loga-

rithmic term into a power series, we have

Taking the Timit on both sides of Eq. {5-32) as A+0, and using the

fact that
£im C] =
A0
we have
A
U,mﬁ-"
A+

i

t g4 Ay
C] C
3
A LA,
C3 CS
1 1

1L A LA,
mi{C. A 3 5
"o o
4 YTgrp
Ty A T

Substituting Eg. (5-33) into the last equation we have

(5-32)

(5-33)
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A
. 1. 4A 2 2 4 5 _ _
ﬁf? &T‘} A+U [ Ly GFO FAY Tapg el =0 (5-34)

Dividing both sides of Eg. (5-30) by A and taking the limit as A

approaches zero, we have

By 2 C
£im —ﬁq = £im -1
A+Q £+0 YA /ré 7
= Lim 2, 1 — —]‘ (5-35)
w0 i f1- (A/C))° |

Expanding [1 - (A/C])Z]q‘/2 into a power series, and using only the

first two terms, Fq. (5-35) becomes

P 2 (1A "
o | o7 [ F] )
= ﬁfg ;%?-= YT%FO ' (5-36)
Thus ,
Lim 1/N(A) = - A 1 (5-37)
A0 RO 1yt YTGFO

As shown in Fig. 5-1, the gain-phase plot of -1/N{A) as A approaches

zero is a point which lies on the -180 deg line with a2 magnitude of

S .2
20 109y0[1/¥Tgpq" -



Asymptotic Behavior of -1/N{A) For Very large Values of A

For very large values of A, the value of C.l becomes

,e,—t:m C-l = f,(.m[:A + T2 l
Ao J ThgFo!

Then
A 3
1 . 4 21 1 AL A
Rim ol = pim |- 20T +—L~+m+—+
Jorco A frroo T GF0 Ty C]A C? C? j
= | A -
© &im [ A TGFO] 0

Similarly we can show that

. 1
»&LmA——

Ao

= 4]

Thus,
Linm P 1/N(Aﬂ = —§/0 =] -270

Ao -

(5-38)

(5-39)

(5-40) .

(5-41)

As shown in Figure 5-1, the gain-phase plots of -1/N{A) approach

oo | - o oo
|~270° as A > = for all values of y and Tero-

11
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6. Computer Simulation of the Simplified LST System with the

Analytical Torque Expressions

A computer simulation of the LST system is presented here to
corroborate the results of the describing function analysis of the
last chapter. Since the describing functipn analysis has been carried
out with the analytical torque expressions for the CMG frictional
nonlinearity, the simulation model of the nonlinearity also has the
same characteristics. This model of the nonlinearity is implemented by
using the expressions for TGF

conditions for 9g and TGF being redefined each time a sign change in

& occurs.
G

in Eqs. (2-38) and (2-39) with initial

The simpTified LST system is represented by the block diagram of
Figure 1-7. The linear transfer function which the nonlinear element NL

sees is given by

2
JVS
4 3 2
JGJVS +JVKpS +J, K:s7+K

G{s) =

HK13+KIHK

VI [ 0

Two sets of numerical values are considered as follows:

System 1 System 2
Jv 10° 10°
Jdg 2.1 3.7
Kp 216. 280.
K 9700. 10000
H 600 200
K 1371.02 3000

Q 5758. 35 20000
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The frequency-domain plots of G(s) for both systems are given
in Figﬁre 6-1 in db versus phase coordinates. Figure 6-1 also
contains the -1/N curﬁes 6f Figure 5-1 for y = 1.38 x 10%,

1.38 x 10% and 1.38 x 107,

With v = 1.38 x 107, the -1/N curve intersects the G(s) curves
of the two systems at two points each. Among these the stable points
for sustained oscillations are the ones on the left at the higher
frequencies. The approximate magnitudes and frequencies of the
oscillations are 6 x 10°° rad and 4.4 rad/sec, respectively, for
system 1, and 2 x 10°° rad and 5.6 rad/sec, respectively, for system
2. The curves in Figure 6.1 also show that for v considerably smaller
than 1.38 x 107, both systems will exhibit a stable response, although
for certain values of y system 2 will show sustained oscillations
while system 1 is stable.

For the computer simulation, the input to the LST system, ¥,
is set to zero, along with all the initial states, except for the
vehicle position oy- The initial value of By is set at 5 x 1073
rad, whfch is chosen so that the input signal to the nonlinearity,
6 would be Targe enough to cause the torque to saturate, while
at the same time the limiting value of the input signal is not
exceeded.

The following quantities are plotted from the simulation runs:

by = vehicle position (rad)

1

vehicle velocity (rad/sec)

8g = Gimbal position (rad)
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wg = Gimbal velocity (rad/sec)

Tep = Torque output of the nonlinearity (ft-1b)

 Error = Error input command (rad/sec) to the CMG
X = Koy - Kyuy

Figures 6-2 and 6-3 show the plots of the above listed quantities

for system 1 with v = 1.38 x 107. It may be noted from the plot of Ter
iﬁ Figure 6-3 that the system has a sustained oscillation. This
oscillation is not seen on the other plots because of the large initial
transients. Figure 6-4 through 6-5 show the continuation of Figures 6-2
and 6~3 with proper scales. Figures 6-6 and 6-7 show the response plots
for system 2 with v = 1.38 x 107, and Figures 6-8 and 6-9 show the
continuation of these plots with proper scales. The frequencies and
magnitudes of oscillations obtained with the two systems are quite

close to the predicted values. The small discrepancy is attributed to
the discretization of the nonlinearity implementation on the digital
computer.

Figures 6-~10 and 6-1]1 show the response plots for system 1 with
¥=0.69 x 107 and their continuations are shown in Figures 6-12 and
6-13, respectively. Figures 6-14 and 6-15 show the response plots
for system 1 with v = 1.38 x 10° . As predicted, the system is stable

for both of the lower ¥ values.
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7. Transfer Functions of the Sampled-Data LST System

Since the actual LST system has sample-and-hold between the vehicle
controller and the CMG controller, the system should be modelled as a
sampled-data control system. Figure 7-1 shows the block diagram of the
simpTified LST system with sampled data. Since it is necessary to
isolate the CMG nonlinearity from the linear dynamics for analytical
purposes, a sample-and-hold is inserted in front of the nonlinearity
as an approximation.

Referring to Figure 7-1, the following equations are written

using e*, GG* and GV* as outputs.

G, G.G-G,|* G, G,G,G,G.-G,]*
o = (607 +N*{.ﬁoﬁi_611 oot - [ 11255 7} e (7-1)
0 0 '
G, G.1* G, G6G,G,G.1*
) hols ho®283% _
eG* = -N¥ sA }SG* * [ sA ] e* (7-2)
0 0
G, G,G,G.G.* G, G G,1*
2367

where the symbol * denotes the z-transform operation, and N* represents

the discrete describing function of the CMG frictional nonlinearity:

by = 1+ 6366 (7-4)
Equations (7-1) through (7-3) are portrayed by the sampled signal flow
graph of Figure 7-2. Applying Mason's gain formula to this flow graph

yields the determinant of the graph as
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Figure 7-1. A block diagram of the simplified LST control system with sampled data
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Figure 7-2. The Sampled Signal Flow Graph for the Equivalent System.
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pe 1 el |Cho®s]™ T Bno%%7%1]" [ Cho® 83
: sbq 4 shy

* * *
. 1% [GhoG1G2GSG6G7] [GhoGﬁJ . {GhoG162GBGGG?] (7-5)

o) SAO AO

0

The last equation is put into the form of {with N{z) = N*)

1+ N{(z)&(z) = O (7-6)
whe re ) ( ) : )
A(z)-A,(2)A {z)+A, (2)A (2
_ 2 3 4 ]
G(z) = 1+A4(Z) (7-7)
G
-1 5
A = ]- ) (7"8)
-I(Z) (1-z )3[ 52.&0]
(G,.6-6 :
Mlz) = (1-271) 3 ————‘;A; ‘J (7-9)
(G, 6.,G
-1 293%
A = (1~ (7-10
3(2) ( Zz )3’ SZAO J : )
(66,G.G,.6G
Aglz) = (1-27) 3 —Jhégi?filq (7-11)

Substitution of the system transfer functions into the above expressions

y] e]ds 2
J.574+K s+K
8 = —Ef_irif"l_ (7-12)
JaS .
G
Afz) = (]'2-1)3 3 ]2 (7-13)
JGs +Kps +KIs
. -1 H(K +K.s)
Az(z) = (1-z7") 01 ] (7-14)

2 2
va (JGS +Kps+KI)J



The following system parameters are used for System. 1:

H=6

[ e =~ =< < [
— -— o
13 1l 1] |t il n

Taking the

Egs. (7-13) throu

A (2)

=~ TS -1
— —
(2] e 1] It
i I i 1 1

Ar(2)

] Ky
= (12 93—y
s (JGS +Kp$+KI)J
) 1 KIH(KO+K]S)
= (]_Z ) 5, -_.3__..#__._.? _____ —
. va (JGs +Kps+KI)

r

00  ft-Tb-sec

2.1 ft—]b—sec2
5.75835 x 10°
1.37102 x 10°

216 Tt-Tb/rad/sec
9700 ft-1b/rad

10°  ft-Tb-secl

34

(7-15)

(7-16)

z-transtorms of the functions inside the brackets in

gh (7-16), we have the following results:

-] z-]
+ Ay, e =
137 Me R T s e

= A

- 51.429993 ~ §44,42923

51.429993 + j44.42923

= 1.0309376 x 1074

- 5.15469 x 107° - §5.9669182 x 1070

= -5.15469 x 1072 + j5.9669183 x 10-°

T z=] Z-1
= foy =5t Ay, A, S AL
22 z~1 23 24 Z_eaT 25 Z_eET

(7-17)

(7-18)



]

H

1

1]

n

I

il

3.5616776 x 1073

7.6870434 x 10°°

8.6763263 x 1072 + j1
8.6763263 x 107 - 31

6520832 x 10°

6520832 x 1072

2

The following system parameters are used for System 2.

= -3.8435217 x 1077 - 34.8499764 x 1077
3.8435217 x 10°7 + 54.8499764 x 107%
T z-1 z=1
= Py et A+ A + A (7-19)
2 77 A3t Py ATt s
= 1.0
. -2.2268397 x 1072
1.1134446 x 1072 + 31.6350537 x 1073
1.1134446 x 1072 ~ 31.6350537 x 1072
2
T (z+1) T z-1 z-1
S NP 1 ¢-5.4 D S SO I N S S 2 I _
9552 T2 T My T P Tt Mg
(7-20)
3454837
7. 4564409
- -0.17352653

The

same expressions for A](z), Az(z), A3(z) and Aq(z) are preserved.

H = 200 ft-lb-sec

fl

1l

3
2
3

.7 ft—1b~sec2

x 10

x 10°

35



Py
n

280 ft-1b/rad/sec

= 10% Ft-1b/rad

10° ft-1p-sec?

_~
|

[
1]

The corresponding coefficients in Egs. (7-17) through (7-20)
are

= -37.83783 - j35.651077

a
|

= -37.83783 + j35.651077

o |
I

Ajq = 9.9999976 x 107°

Ayg= -4.9999973 x 107 - j5.3066848 x 107
Ayg® ~4.9999973 x 107° + 35.3066848 x 107
Ay, = 3.9999932 x 107

Ay = 4.8799929 x 107"

Ay, = -2.43997 x 107 - j3.150655 x 107"
Aos = -2.43997 x 10°% + j3.150655 x 107
Ay, = 9.9999982 x 107"

Ay = -2.8 x 107°

Ayy = 1.4000002 x 107° + j8.3391555 x 107
Ags = 1.4000002 x 1072 - j8.3391555 x 1074
Agp = 39.999985

Agp = 4.8800011

Ayg = -1.5144014 x 107

Ry = 7.5720072 x 1072 + 31.1923421 x 1072
Ays = 7.5720072 x 107% - §1.1923421 x 1072

It can be shown that if T approaches zero, the z-transfer function
G{z} in Eq. (7~7) reverts to that of the continucus transfer functien

G{s) of Eq. (1-16).
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8. The Discrete Describing Function of the CMG Frictional Nonlinearity

In order to study the condition of self-sustained osciliations
of the LST system with sampled data, it is necessary to evaluate
the discrete describing function of the CMG frictional nonlinearity,
N(z).

The first step in the derivation of N(z) involves the inter-
changing of the positions of the nonlinearity and the zero-order
hold in Figure 8-la. This step is justified since the nonlinearity
is ampTitude dependent only, so that the signal of Tep 1s not affected
by this interchange. Figure 8-1b illustrates the transposition
between NL and zoh.

The second step involves the assumpticn that eG is §Tnusoida1;

thet is,

eG(t) = Acos(wt + ¢) . | (8-1)

where A, w, and ¢ denote the amplitude, the frequency in radians,

and the phase in degrees of the sinusoid, respectively.

The z-transform of eG(t) is
05(2) = J Acos (K 4+ 4)27k (8-2)
k=0

¢r in ciosed form,

Azl (z - cosgﬂicos¢ - singﬂsin¢]

o N N

@G(Z) R R P - (8-3)
27 - 27cosT—




85 05" .

(a)

GF

%*
% % Y

GF

(b)

Figure 8-1

An important consideration is that because of the periodic

nature of the sampler, BG(t), GG*(t), and TGF*(t) are all periodic

functions of period NT, where N is a positive integer >2.

Therefore, w = 27/NT, and wl = 2%/N.
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The output of the nonlinearity in Figure 8-1b is denoted by
TGF*(t), and its z-transform is TGF(z). The discrete describing

function (DDF) of the nonlinearity is defined as

It turns out that the discrete describing function (DDF) for
N = 2 must be derived separately, and a general expression for N(z)

can be obtained for all # > 3.

The DDF for N = 2

Let T..(kT) denote the value of T._*(t) at t = kT. For N = 2,

_ GF( GF
the signal TGF*(t) is a periodic function with a period of 2T7. The

z-transform of TGF*(t) is written

Tep(z) = T(O (1 + 272+ 274 ) 4 TGF(T)(Z—] v 273
 Tge(0)2% + T (M) ]
= 5 : (8'3)
Z [

For the CMG frictional nonlinearity, it has been established

in chapter 2 that

R a
- 511 - cos(uwt + ¢)] .
Terlt) = Torg™ 1 T st 9
rr Tttt - cos{ut + ¢)]

39



Terlt) =

Let us introduce the

_
a3

o)
+

1 - cos(uwt + ¢)]

GFO

xa

— 1
4

1 - cos(wt + ¢)]

following notation:

Tor (T = Tep(W ey 920
T (T) = T (t) 6.5 0
GF ~ 'GF !t=kT G —
We have,
Tor (KT} = T, . 77 01 - s+ o))
GF GFO - l : + %{1 B Cos(zﬂk + ¢)]
R a
LU CRO SRS e N L cos G + )]
= Tergr
GF GFO Eq_“:]:—_T'I- g{] _ COS(*ZJT—k—'?‘ ¢)]
For N = 2,
TGF(O) = TGF_(O) 0 <S¢ <
= TGF+(O) T <G <27
TGF(T) = TGF+(T) r 5_¢ < 27
= TGF.—(T) 0 <¢ <

(8-7)

(8-8)

(8-9)

(8-10)

(8-11)

(8-12)

40



Substituting N = 2 into Eq. {8-3), we have

polz) = £2C0se | (8-13)

2+ 1

Using Eqs. (8-5) and (8-13), the DDF for N = 2 is determined,

) TGF(O)z + TGF(T)

N(z) = Alz - T)cose (8-14)
Also, for N = 2, z = -1, the last equation becomes
Tae (0} = Tpap(T)
_ _GF GF
N{z} = SRcoss (8-15)
For stability analysis, we define
1 2Acos9 '
F{z) = - = = (8-16)
N(z) = Tee(T) - T..(0)

The DDF for N > 3

In general, the z-transform of the output of the nonlinearity may
be written as

T K ) =k-7
m=0 k=0

Tge(2)

N-1
I T (kT2 K

k=0

- (8-17)

z -1
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Using Eq. (8-2) for eG(z), the discrete describing function
N(z) is written

N—]
(kT)z

Tar(z) k= o (8-18)

N = =
(2) 95642 N 7 Acos(g%5-+ 8)z K
ko

The denominator of N(z) may be simplified as follows:

8]

(2N - 1) Z Acos(gEE-+ $)z7 K = A 7 2N kcos(21Tk +¢) - A E z cos(ZTrk + ¢)
k=0
Nl 2mk Ly NekeT
= A X cos (5 + ¢)z {(8-19)
Thus,
N-1
kz TGF(kT)zN‘k_]
N(z) = =0 (N > 3) (8-20)
N1 ok N-k-1
A} cos (= + ¢)
k=0
As an alternative we may expand zN -1 as
N-1 .
N o= kHO(z - gdZmk/N, (8-21)

Then, using Eq. (8-3) for GG(Z), N{z) is written
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N-1
’ TGF(kT)zN—k[z2 - 22c03%£—+ 1]
N(z) = k=0 (8-22)
N-1 .
n(z - eJZ“k/N)Az[(z - cos%ﬂdcos¢ s1n——s1n¢]
k=0 -
For N = 3, N(z) is simplified to
.
\(2) - TGF(O)Z_ + TGF(T)Z + TGF(2T) (8-23)
Alz - 1)[(z + 0.5)cose - 0.866sing]
For N > 3,
N-1
I Teplkm)z
N(z) = k=0 (8-24)
N-2 21k /N 2
Az -1} (z~e Yz - cosﬁwicos¢ s1n—w51n¢]
k=2
where in general,
- 2k
Tael{kT) = T (kT) 0 <=+ ¢ <1
GF GF+ sz (8-25)
= Tgp (KT) T < E + <2

where 0 < (2wk/N + ¢) < 27 must be satisfied by appropriate conversion
of the angle 2mk/N + ¢.

For stability studies the critical regions of F(z) = -1/N{z)
should be constructed for N = 2, 3, ..., with ¢ varied from 0° to

360°, and A from 0 to infinity.



The following theorems on the properties of -1/N{(z) are useful

for simp]ifying the task of the construction of the c¢ritical regions.
Theonem §-1

Fon any integhal N, the magnitude and phase of -1/N(z) nepeat
fon every ¢ = 2m/N radians.

Proof: The negative inverse of the discrete describing function

is written

1 -Al{z - cos%ﬂﬁcos¢ - sin%ﬂsin¢](zN -1

Fz) = - §7 = T (8-26)
ez) l } TGF(kT)zN'k"]}(z2 - 22(:05%[—E + 1)
k=0
Let
F}(Z)Fz(z) _
"(2) = FERE @27
where
F](z) = -Al(z - cos%ﬂdcos¢ - sin%ﬂsin¢] (8-28)
Fo(z) = M1 (8-29)
N-1
Falz) = kzonGF(kr)z”‘k” (8-30)
Fq(z) = (22 - 22cos%i-+ 1) (8-31)



Let

Then,

and

Also,

F(Z)N = [F(Z)]¢ = ¢ + 2m/N

F@iy = Iy = 6 4 20m

|
(%]
——
N
L—
=
I

= [F3(2)y = g+ 2an

ArglF(2)] - Arg[F(z), ] = ArglF,(2)] - Arg[Fy(z)]

- ArglFy(z),] + Arg[F,(z),]

[Fy(2)] = [asing™

HONE [Asmﬁﬂ - |Fy(2)]

Let us express F3(2)N as

(8-32)

(8-33)

(8-34)

(8-35)

(8-36)

(8-37)

(8-38)
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N-1

_ N-k-T
Falz)y = kZOTGF(kT)Nz

where

Ter(KTly = Tee(kTy < 4 4 2npn

It can be shown that for any integral N,

N-1

F3(z)N = 2F3(z) = kZDTGF(kT)z

Then, Eq. (8-35) becomes

gl Sl | 2]
*?{E%ﬁT’ 173 (2)1 Falz))
The argument of F.(z) is
Arg[F,(z)]1 = ¢ - /2
Then

Aré[F](z)N] = ¢ - /2 + 2u/N

Thus, Eq. (8-36) becomes

N-k

(8-39)

(8-40)

(8-41)

(8-42)

(8-43)

(8-44)
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Arg[F(z)] - Arg[F(z),]

Q.E.D.
As an illustrative example

case of N = 4.

il

i

2m

o Arg[FB(z)] + Arg[F3(Z)N]

BT . ArglF4(z)] + Arg[zFy(z)]

EL . peglF,(2)] + 55+ ArglFy(2)]

of Theorem 8-1, let us consider the

a_ )
Let § = yTopoh = K
Then
~ . R+ KR+ 1)[cos(¢p + 2rk/N) ~ 1]
Ter (KT) = 3 K?R ¥ TVFcos (o + 2nk/N) = 1] GFO
+ - R - K{R - D)Jcos(d + 2uk/N) -~ 1]
Tae (KT) = TR = 7iTc T

3

Fazly =

It is easy to see that

os ¢ + 2nk/N) - 11 GFO

- - 2 + +
oF (0)z” + TGF (T)z" + TGF (2T)z + TGF (3T}

- 3 + 2 + -
TGF (U)Nz + TGF (T)Nz + TGF (ZT)NZ + TGF (3T)N

(8-45)

(8-46)

{(8-47)

(8-48)

(8-49)
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Tor (Oy = Tge (T)

+ .
Ter (Thy = Tge (21

(8-50)
+ _ +
Tep (2T) = Tgp (37)
Tar (3T)y = Tgg (0)
which proves that F3(z)N = zF3(z).
Similar resu1t§ are obtained for m < ¢ < 2.
. Theorem §-2
For add N (N > 3], The magnitude and phase of -1/N{z] repeat
fon eveny ¢ = w/N.
Proof: Let F(Z)N, F](Z)N, F3(z)N now be defined as F(z},
F](z), and Fs(z) with ¢ replaced by ¢ + w/N, respectively.
Then,
= .
AY‘Q[F-I(Z)N] =9 - 2 + N (8—5])
ArglF(z)] - Arg[F(z)\] = - § + Arg[Fy(z),] - Arg[F,(2)] (8-52)

Using the same notation as in Theorem 8-1, it can be shown that

for odd N > 3,
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Fylz)y = -2 /2 (2 (8-53)

Thus,
arglFy(2),] = 7 - o120 prgre o))
=+ Arg[F(z)] (8-54)
Again,
Fa(z)
_Eigng_z }?iTEUN -1 (8-55)
and
ArglF(z)] - ArglF(z)y] = - § + Arg[F4(2),] - Arg[F4(z)]
=0 (8-56)
Q.E.D.

As an illustrative example of Theorem 8-2, consider the case N = 3.

For G < ¢'< T,

Fa(z) = Tee (002" + To™(T)z + T F(ar) (8-57)
Falz)y = Tge (042 + To (T2 + 1.7 (2T), (8-58)

It can readily be shown that



- +
Tor (Ody = ~Tgr (21

+ -
Tee (T ™ “Tgp (0
+ -
Tor 2Ty = ~Tge (T)

To carry out one of the identities above,

(8-59)

(7). = TRz K(R - [cos(¢ + m) = 1] . R+ 1){cos¢ + 1)
GF N GFO T - K(R - T)fcos{¢ + ) - 1] 1+ 1){cos¢ + 1) GFO
(8-60)
- _ R+ K(R+ 1)}{cos¢ - 1)
Tar (O = Terg T—KIR ¥ Ti(Coss = 1) (8-61)
Using the relation, R2 + KR - 1 =0, we have
Thus,
Falz)y = -2 'F4(2) (8-63)

The significance of the Tast two theorems is that the critical

regions of -1/N(z) need be computed only for 0° <¢ < n/N for odd

N, and 0° < ¢ < 2n/N for even N.
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Theorem §-3.

Asympotic Behavior of -1/N{z) as A approaches Linginity.

(a) Lim|-1/N(z)| = o

Boren

(b) For even N >4, 0 < ¢ < 2u/N.

1

im Arg[-1/M(z)] = (3 - D + 4

IS

2 N

Forodd N >3, 0 < ¢ < /N

(c) ForN=2 0c<

Lim Argl-1/N(z)]

Lin Arg[-1M(2)] = (1 - DT+ ¢

0° 0 <o <n/2

it T2 < <1

(d) Forn=3 0<¢<a/3

S

Lim Arg[-1/N{(z)] = - T+ b

Aores

Proof:

We can easily show that

B

LLm TGF+(kT)

A%m

“Terog

GFO

(8~64)

(8-65)

(8-66)

(8-67)

(8—68)

(8-69)

(8-70)
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The magnitude of -1/N(z} is directly proporticnal to A as A
approaches infinity; thus {(a) is proved.

ForN=2 0<¢<mn/2

F(2) = UM = g oy (6-71)

Thus,
; : 2Acosd
Lim Arg[F{z)] = &im Arg =
" Arg L= 00 0o <2
GFO
= T/ <h<m {8-72)

This proves. item {c}.

For N=3 0<¢<mn/3

i

F(z) = ~A[(z + 0.5)cose ~ 0.866singl{z - 1)

5 (8-73)
Tepl0)2™ + Top(T)z + Tae(2T)
Lo ArglF(2)] = - o Lin ArgLTge(0)2” + Top(T)z + To (2)] + ¢
= - %ﬂ-— Ar‘g[—z2 -z+ 1)+ 9
==y | (6-74)

This proves item (d).



For N > 4 and even 0 < ¢ < 2n/N

Using Eqs. (8-27) through {8-31), we have

ﬁém Arg[F(z)] = &im {Arg[F}(z)] + Arg[Fz(Z)] - APQEF3(Z)] - APQ[F4(Z)]

Ao

< -5 tin [AralFy(2)1] + ArglRy(2)] - Arg[F4(z)](8 N

N-2

ArglFy(2)] - AralF,(2)] = Arsl(z - 1) T (2 - T/

. . . N-2 . .
- Arg[er/N(eJﬂ/N _ e-JW/N) F eJZW/N(] ) eJZW/N(k-?))] (8-76)

53

' . ) . . N-3 .
Arg[Fy(2)] - Arg[F,(2)] = ArgLed TN (I TN _ o=JT/Ny (oJ2m/NyN-3"5"q _  J2mk /Ny

k=1
7o o N=3 Smk/N, ~juk/N +imk/N
=g+ 5+ (N-3)(ED) + Arg T ¢ (e - e T
N2 N Yol
' ~ N-3
_ T k
SRE - DED - -] ZN“ (8-77)
N-] N-k-1
£im Arg[F (2)] = £im Arg E T kT)z

Ao Ao



N-k-1 N-k-1
=Arg ] - Tepz + Arg 7 Tnpn?
k=0 GFO K=N/2 GFO
/e Nk _ oD
= Arg - ThrnZ S i
Thus,

( = S, NI L - _r _ _2_?[ = JSJI.
LonhrglF(2)] = 0 - Z+ e (V- (-2 + (0 - ED b
N-3

=3 N_4& K
- (3 5 N + g] N)?T + ¢
e
For N > 3 and odd 0 < ¢ < a/N
For this case,
. . {N-1)2 N-1
Lim ArglFg(z)] = Arg [ - Tooo2" KT 4 prg Torg?' K]
froe k=0 kT2
- N - 3)m
2N

Thus ,

(8-78)

(8-79)

(8-80)

54



ﬁim Arg(F(z)]

0
<
1
BN

N-3
N7 k
=-goawt Lonimte
Tym
(-I - N)§+¢

and (b) is proved. Q.E.D.

Theohem §-4.

Asymototic Behavion of -1/N(z) as A approaches zenro.

1

Lim F(z) = - 5
for all ¢ and ail N,
Proof: From Eq. (8-20),
N-1
~A ) cos(?;Tr + ¢)ZN-k~T
F(Z) = _ . 1 - k=0
N(Zj NE] ( ) N-k-1
T.-(kT}z
N-1
-7 cos(g§3-+ o)z k-1
. k=
£im F(z) =
N-T T.-(kT)
As0 tim jFA MN-k-1
A+ k=0

N-3
+ T+ (- 8)( g)+(w—3>(§1>+k215£--

(N - 3)7
ZN

(8-81)

(8-82)

(8-83)
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_ k%0 e
N TL(kT) (8-84)
o TertRT) e
R
k=0 A0
Tp(kT)
-~ Therefore;-the problem fs- that of finding Lim ——p—- oo -
0
First, let Te (kT) = T "(kT). Then
- 2mk
v TGFA(kT) - tin Tep, A TT - YTero * ;TEFOCOS( N = + o)
i
A0 A0 ¥Tgroh - YTgpghcos (5 + 0) + gy
emk
Tero &7 AR T ero Loos 5+ 9) - 11 (a-s5)

where the fact that £im [1/(R + 1}] = 1 has been used.

A0
2 2,2
T A® + 1
. R e RCope 1] ] GFO ]
Lim E Lim 5+ = Lim |- tJ/ (8-86)
arg ARF 1) 0 B o0 A BYTgegh ) Ty Topg A J
Or,

sim Ao 1 1/ 2. 2,2
ﬁT"+ TV AR BT R T e | A Ty A (8-87)
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Expanding~/1 + 4Y2TGF02A2 into a power series, and using only the

-fHrst-two terms, we-have, ... .. _ _

> 27
14 Tapg A

s AT pe v g 0

Thus,
T (kT)
. GF _ ya 2 2ﬂk
£im 7 = YTGFO t YTerg [cos(=—+ &) - 1]
A0 :
2
YTGFO cos(g%3-+ )
Similarly, it can be shown that
T T(kT) T .. (kT)
Lim -Efﬁ"——~ = £im —EEK———— GFOZCOS(zﬂk + ¢)
A+0 A+Q
Now,
N-1
z cos ( ZER ¢)ZN~k—1
Lin F(z) = —K0 - -1
A0 2 (2rk N-k-1 AT
YTero kzocos TR L GFO

for all ¢ and a1l N. Q.E.D.

{8-88)

(8-89)

{(8-90)

(8-91)



